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The pursuit of knowledge is a basic feature of human nature.
However, in domains ranging from health to finance people
sometimes choose to remain ignorant. Here, we show that valence
is central to the process by which the human brain evaluates the
opportunity to gain information, explaining why knowledge may
not always be preferred. We reveal that the mesolimbic reward
circuitry selectively treats the opportunity to gain knowledge
about future favorable outcomes, but not unfavorable outcomes,
as if it has positive utility. This neural coding predicts participants’
tendency to choose knowledge about future desirable outcomes
more often than undesirable ones, and to choose ignorance about
future undesirable outcomes more often than desirable ones.
Strikingly, participants are willing to pay both for knowledge
and ignorance as a function of the expected valence of knowl-
edge. The orbitofrontal cortex (OFC), however, responds to the
opportunity to receive knowledge over ignorance regardless of
the valence of the information. Connectivity between the OFC
and mesolimbic circuitry could contribute to a general preference
for knowledge that is also modulated by valence. Our findings char-
acterize the importance of valence in information seeking and its un-
derlying neural computation. This mechanism could lead to suboptimal
behavior, such as when people reject medical screenings or monitor
investments more during bull than bear markets.

information seeking | decision making | valence | knowledge | ignorance

People spend a substantial amount of time seeking and con-
suming information. The quest for knowledge is central both
to our modern economy and to our evolutionarily old drive to
learn. Despite the importance of information seeking to human
behavior we know surprisingly little about what drives the desire
for knowledge. Most prevalent theories suggest that humans and
other animals are endowed with curiosity because information
can help make better decisions that will facilitate obtaining re-
wards and avoiding harm (1, 2). As information is often useful,
curiosity evolved to be a broad feature, which also generalizes to
cases when information cannot inform action (3-8). The puzzle,
however, is that in domains ranging from health to finance people
at times select ignorance, even when knowledge can inform action,
such as when people reject medical screenings (9-11).

We pose that valence is central to the process by which the
human brain evaluates the opportunity to gain information,
explaining why knowledge may not always be preferred. This is
because knowledge influences not only people’s actions but also
their belief state. For example, knowing one has a genetic pre-
disposition for Alzheimer’s disease generates a negative belief
state, while knowing one is about to receive a promotion gen-
erates a positive belief state. This intuition led to the hypothesis
that beliefs, just like material goods and services, have utility in
and of themselves (12-15). This simple, yet fundamental, notion
has significant potential for predicting people’s preference for
knowledge or ignorance in domains ranging from medicine to
politics. If beliefs have utility, people will be motivated to reg-
ulate the information they are exposed to (13, 16). In particular,

Www.pnas.org/cgi/doi/10.,1073/pnas. 1800547 115

they will be biased to obtain knowledge that can generate or
confirm desirable beliefs (such as seeking positive feedback
about their work) (17, 18) and at times to remain ignorant of
information that does so for undesirable beliefs (such as avoiding
medical tests) (9-11, 19, 20).

Here, we examine whether the human brain represents the
value of knowledge as a function of valence and whether this
coding is associated with information-seeking behavior. We hy-
pothesized that reward-related brain regions compute errors in
predicting the likelihood of obtaining knowledge (21-24) in a
valence-dependent manner. Specifically, this suggests that the
opportunity to gain knowledge is ascribed greater value when
knowledge is expected to generate positive beliefs. This pattern of
neural coding would in turn predict a bias to pursue information
that can support desirable beliefs over undesirable beliefs. More-
over, if the brain values knowledge as a function of valence, then
people should be willing to forgo material rewards to acquire
information that can confirm desirable beliefs, even when in-
formation cannot inform action, and may at times forgo material
rewards to avoid information that can confirm undesirable beliefs.

Our investigation focuses on neural regions most likely to
process reward. We used Neurosynth (25), a platform for large-
scale, automated synthesis of thousands of fMRI studies, to
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identify the areas most documented in signaling, processing, and
assessing rewards (see also ref. 26 for a similar procedure). This
procedure clearly identified the nucleus accumbens (NAc) and
midbrain dopaminergic regions ventral tegmental area and sub-
stantia nigra (VTA/SN), which have been widely documented in
signaling expectations of reward in humans (27-29) and non-
human animals (30, 31). To test our hypothesis, we conducted
two experiments. In Experiment 1 we tested whether these re-
ward regions represent the opportunity to gain knowledge as a
function of valence. In Experiment 2 we tested whether partici-
pants pay for knowledge and ignorance and whether these de-
cisions can be explained by the expected valence of knowledge.

Results

In the first experiment we combined a novel behavioral task with
functional brain imaging. Participants played a lottery with gain
(Fig. 14) and loss (Fig. 1B) blocks. On gain trials they would
either win $1 or $0. On loss trials they would either lose $1 or $0.
At the end of the experiment they received their accumulated
earnings. The probability of winning or losing $1 was displayed
on each trial in the form of a pie chart. This allowed explicitly
computing the expected value (EV) of the lottery on every trial
as the product between outcome probability and magnitude
(thus varying from —0.9 to —0.1 for losses and from 0.1 to 0.9 for
gains). The participant’s task was to indicate whether they would
like to reveal the outcome of the lottery. They did so by selecting
between two offers, each representing a different probability of
having the outcome revealed. Importantly, it was made clear to
participants that whether the outcome was revealed had no
bearing on their actual earnings. Thereafter either (i) a green
knowledge cue appeared, indicating that an informative outcome
cue (either win/zero/loss) would follow, or (ii) a red ignorance
cue appeared, indicating that a noninformative outcome cue
(“XXXX”) would follow. Color associations were counter-
balanced across participants. After completing this task inside
the fMRI scanner participants completed a similar task outside
the scanner (Fig. 1C) in which they were shown all lotteries

A Knowledge choice task ( blocks) B Knowledge choice tasl

Gain 3s Loss

Probability Probability
counterbalanced
Igforma?:pn 3s Information
robability ‘) counterbalanced Probability
Offer 1 Offer 1
Information 3s N
Information
Probability ™
Offer 2 Probability

Until response (max 3s)
+0.5s feedback

Knowledge
Cue

Ignorance
Cue

Jittered Knowledge
3-7s Cue

WIN s LOSE

Non-Informative
Outcome Cue

Informative Outcome Cue Informative Outcome Cue

Outcome Probability

Rating

Ki ledge C
C Knowledge rating task oo e

(example trial)
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again, but instead of making choices they indicated how much
they would like to know their outcome by moving a cursor on a
scale from —300 (“Not at all”) to 300 (“Extremely”). All symbols
and cues used in the study are described in SI Appendix, Fig. S1A.

Preference for Knowledge Is Valence-Dependent. We predicted that
participants would prefer information that supports desirable
beliefs over undesirable ones (13, 16, 17), and that this bias
would sit on top a general curiosity to reveal outcomes (5-7, 22,
23). Indeed, the preference for knowledge was significantly
greater when participants expected good outcomes. Participants
selected the most informative option (highest information
probability offer) on 83.83% of trials [greater than chance:
1(35) = 10.29, P < 0.0001], and they did so more often on gain
trials (average = 88.14% + 16.95 SD) than on loss trials [average =
79.55% + 25.83; t(35) = 2.74, P = 0.01] (Fig. 24). Consistent with
these results, participants rated their desire to observe informative
cues significantly higher on gain trials (mean rating = 117.5 +
101.1) than on loss trials [mean rating = 88.77 + 106.3; #(35) = 3.16,
P = 0.003; Fig. 2B].

Importantly, the more likely participants were to win on gain
trials the more they wanted to know the outcome [mean slope
between probability of winning and information choice = 0.216 +
0.42, 1(35) = 3.06, P = 0.004; Fig. 2C]. The more likely partici-
pants were to lose on loss trials, the less they wanted to know the
outcome [mean slope between probability of losing and in-
formation choice = —0.266 + 0.49, #(35) = —3.28, P = 0.002, Fig.
2C]. In other words, preference for knowledge was valence-
dependent (Fig. 2E): The greater the EV of the lottery the
more likely participants were to select knowledge over ignorance
[mean slope between EV and information choice = 0.119 + 0.19,
#(35) = 3.71, P = 0.001]. The desire to know, as measured by partic-
ipants’ ratings, was similarly related to the lottery EV (Fig. 2D).
Ratings increased with probability of winning on gain trials
[mean slope between probability of winning and rating = 185.4 +
234.9, 1(35) = 4.73, P = 0.00004] and decreased with probability
of losing on loss trials [mean slope between probability of losing

k (loss blocks)

Fig. 1. Experimental design. (A and B) On each trial
participants observed a pie representing the likeli-
hood of (A) winning or (B) losing $1 on that trial.
They also observed two offers (blue bars) representing
the likelihood of the outcome being revealed (order of
pie and bars counterbalanced across trials). Partici-
pants selected between these two offers, revealing
their preference to observe the outcome cue on that
trial. Then, either a knowledge cue (presented here in
green) appeared, indicating that the informative out-
come cue would be revealed in a few seconds (either
win/zero/loss), or an ignorance cue (presented here in
red) appeared, indicating that a noninformative out-
come cue would be observed (XXXX), followed by a 1-s
fixation cross. At the end of the study participants re-
ceived the accumulation of gains/losses. (C) Postscan
rating task in which participants indicated their desire
to know following each pie, by moving a cursor on a
scale from —300 (“Not at all”) to +300 (“Extremely”). Color
associations were counterbalanced across individuals.
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Fig. 2. Preference for knowledge over ignorance is valence-dependent.
Participants (A) selected the most informative offer more often during gain
than loss trials and (B) rated their desire for knowledge higher during gain
than loss trials. Participants (C) were more likely to choose the most in-
formative offer and (D) rated their desire for knowledge higher on gain
trials when they were more likely to win (orange curve) and on loss trials
when they were less likely to lose (purple curve). Trendlines in C and D
represent second-order polynomial fit (C: gain trials: R? = 0.962; loss trials:
R? = 0.823; D: gain trials: R? = 0.969; loss trials: R = 0.726). (E) Effect of
lottery EV on knowledge preference, calculated for each individual partici-
pant as the slope between EV and the proportion of times they selected the
most informative offer. (F) Uncertainty over outcomes following the delivery
of informative or noninformative outcome cues, calculated for each trial as
0 when information is delivered and as the SD of the lottery when in-
formation is denied, then averaged separately for gain and loss trials across
participants. Error bars represent + 1 SEM. Two-tailed t test: *P < 0.05.

and rating = —98.88 + 263.8, #(35) = —2.25, P = 0.031], thus giving
rise to a valence-dependent effect [mean slope between lottery EV and
rating = 52.60 + 71.73, #(35) = 4.40, P = 0.0001]. These results were
replicated in an independent behavioral pilot sample (SI Ap-
pendix and SI Appendix, Fig. S2).

As displayed in Fig. 2 C and D, the data were fit by a poly-
nomial trendline that included both linear and quadratic com-
ponents. This nonlinear relationship likely reflects the additional
effect of uncertainty on preference for knowledge. Uncertainty is
maximal at intermediate probabilities of winning/losing (i.e.,
50%). We formally tested this by running a general linear mixed-
effect model predicting choices from EV and uncertainty (de-
fined as the SD of the outcome distribution). This revealed the
strong positive effect of EV on knowledge choice [estimate =
0.706 + 0.196 (SE), t(4,176) = 3.60, P = 0.0003], as well as a
smaller but significant effect of uncertainty [estimate = 0.196 +
0.067 (SE), t(4,176) = 2.93, P = 0.0034] (see SI Appendix and SI
Appendix, Fig. S3 and Table S1 for additional results and other
variable included in the model). In other words, participants were
more likely to seek knowledge when the likelihood of winning was
high and losing was low, and there was a boost in information seeking
when outcome probability was most uncertain (i.e., close to 0.5).

One potential explanation for our results would be simple
Pavlovian conditioning: The knowledge cue (green bar) could
acquire differential value in the gain vs. loss blocks due to trial-
by-trial reinforcement. However, our control analyses show this

Charpentier et al.

was not the case (SI Appendix, Fig. S4). As detailed in SI Appendix,
our data are also inconsistent with the possibility that participants
misunderstood the instructions, believing that no information
meant no outcome.

Valence-dependent information seeking would inevitably lead
to differences in the degree of uncertainty about desirable and
undesirable outcomes. To quantify and illustrate the amount of
uncertainty that remained about each trial’s outcome after the
informative or noninformative outcome cue was presented we
defined uncertainty as 0 when information was obtained and as the
SD of the lottery when information was denied. We then plotted
remaining uncertainty averaged over participants and trials for gain
and loss blocks for each of the outcome probabilities. This graph
illustrates that participants’ valence-dependent information-seeking
strategy granted greater certainty about positive outcomes, while
leaving greater wiggle room for beliefs about negative outcomes,
especially when outcome probability was 50% or higher. Indeed,
entering these data into an ANOVA confirms not only greater
uncertainty about losses than gains [main effect of valence:
F(1,35) = 9.18, P = 0.005] but also an interaction between outcome
probability and valence [F(8,280) = 2.09, P = 0.037; Fig. 2F].

Thus far, the pattern of information preference we observed is
consistent with the notion that valence plays a key role in how
people value the opportunity to gain knowledge; participants
selected knowledge over ignorance more often when information
was expected to confirm desirable beliefs than when it was
expected to confirm undesirable beliefs. Next, we turned to our
fMRI data to ask whether the opportunity to gain knowledge
that can support desirable beliefs is also represented by the same
neural architecture and code as traditional rewards, and differ-
ently from knowledge that can support undesirable beliefs.

Hypotheses for Neural Representation of the Opportunity to Gain
Knowledge. If beliefs have utility, then the opportunity to gain
knowledge about good outcomes (and thus form certain positive
beliefs), but not bad outcomes, may be coded as a primary reward.
Electrophysiological studies in nonhuman primates have identified
neural signals that encode errors in predicting the opportunity to
gain knowledge, which may provide reinforcement for seeking in-
formation (22-24). These have been named information prediction
errors (IPEs) and are suggested to be analogous to reward pre-
diction errors (RPEs), which encode errors in predicting rewards
(22). We hypothesized here that IPEs are valence-dependent (VD-
IPEs), coded differently in the domain of gains and losses, and
should predict behavioral patterns of preference for knowledge
and ignorance.

Alternatively, if the opportunity to gain knowledge is coded as
a primary reward regardless of the motivational value of the
outcome, then IPEs may be present in reward-related brain areas
equally for information about gains and losses, because in both
cases knowledge would be gained. These possibilities are not
mutually exclusive; for instance, they could be represented by
different neuronal populations. Finally, if reward regions only
compute the likelihood of receiving material rewards in this task,
then IPEs should not be observed. Importantly, our task disso-
ciated the probability of monetary outcomes from the probability
of receiving knowledge about those outcomes. This enabled us to
examine whether reward regions compute errors in predicting
the opportunity to gain knowledge about monetary rewards and
losses (IPEs or VD-IPEs) irrespective of errors in predicting
those rewards and losses themselves (RPEs).

To test these different predictions, regions of interest (ROIs)
were defined by generating a map in Neurosynth (25), a meta-
analysis based on 11,406 studies, reflecting the likelihood that
the term “reward” was used in a study given the presence of
reported activation in a particular voxel. The map reflected the
relative selectivity with which voxels activate in relation to “re-
ward,” by comparing all of the studies in the database that
contained the term (671 studies for the term “reward”) and all
those that did not. This map revealed three peaks: one in the
VTA/SN and two in the NAc. A 4-mm sphere was drawn around
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each peak to create one bilateral NAc ROI (Fig. 34) and one
VTA/SN ROI (Fig. 3B). A comparison with an anatomical map
(32) confirmed that the VTA/SN ROI included voxels both in
the VTA and in the SN (SI Appendix, Fig. S6).

Neural Representation of Prediction Errors in Gaining Knowledge Are
Valence-Dependent in Reward ROIs. We examined whether our
ROIs tracked IPEs and VD-IPEs. As portrayed in SI Appendix,
Fig. S1B the critical time where we should observe IPEs and VD-
IPEs but not RPEs is when the knowledge cue (green bar) and
ignorance cue (red bar) appear. Both IPEs and VD-IPEs were
computed as described in SI Appendix, Fig. S1B and entered as
parametric modulators of the blood oxygen level-dependent
(BOLD) signal (SPM GLM 1; see Materials and Methods for
details). Specifically, IPE was quantified as “actual opportunity
to gain knowledge” (coded as 1 for the knowledge cue and 0 for
the ignorance cue) minus “expected opportunity to gain knowl-
edge” (the chosen probability of receiving knowledge). VD-IPE
was calculated as IPE multiplied by EV. VD-IPEs represent
errors in the expected information gain as a function of proba-
bility of gains and losses and thus depend both on the likelihood
of receiving information and on the desirability of the expected
outcome. Betas were then averaged over all voxels in each ROL
Importantly, EV was also added as a regressor in the model,
ensuring that VD-IPE and IPE signals did not simply reflect EV
coding. EV, VD-IPE, and IPE were not correlated with each other
as observed by correlating the regressors in each participant and
then comparing the resulting coefficients to zero [EV and VD-IPE:
mean correlation coefficient = —0.027 + 0.125 (SD), #(32) = 1.24,
P = 0.22; EV and IPE: mean correlation coefficient = 0.017 +
0.068 (SD), #(31) = 1.41, P = 0.17; IPE and VD-IPE: mean cor-
relation coefficient = 0.013 + 0.089 (SD), #(32) = 0.84, P = 0.41].
The results revealed a significant effect of VD-IPE in the
VTA/SN [mean beta = 0.111 + 0.244 (SD), #(32) = 2.63, P =
0.013; positive effect observed in 76% of participants; Fig. 44].
We confirmed that the VD-IPE signal observed in the VTA/SN
contained the two key components of a true prediction error
(33), tracking the difference between actual and predicted events
(SPM GLM 2; see Materials and Methods for details): BOLD
signal in the VTA/SN ROI tracked the “actual opportunity to gain
knowledge” component of the signal positively [knowledge vs.
ignorance*EV; mean beta = 0.248 + 0.51, #(32) = 2.79, P = 0.009]
and the “expected opportunity to gain knowledge” component
negatively [expected knowledge*EV; mean beta = —0.231 + 0.46,
#(32) = —2.86, P = 0.007; Fig. 4B]. This suggests that the VTA/SN
tracks IPEs as a function of the EV of the outcome.
Valence-independent IPEs were not observed in the ROIs
[mean beta in VTA/SN = 0.0397 + 0.234, #(32) = 0.975, P = 0.34;
mean beta in NAc = 0.0417 + 0.242, #(32) = 0.991, P = 0.33; SPM
GLM 1; see section below for results elsewhere in the brain].
Examining tracking of IPEs separately in the loss and gain do-

Fig. 3. ROIs. ROIs were defined as 4-mm-radius spheres around the peaks of the
Neurosynth “reward” map (threshold Z > 10). Specifically, based on a meta-analysis
of 11,406 studies, this map reflects the relative selectivity with which voxels activate
in relation to “reward,” by comparing all of the studies in the database that con-
tained the term (671 studies for the term “reward") to all those that did not. Three
peaks were identified on the map, resulting in two ROIs shown in red: (A) bilateral
NAc (peaks at [-10,8,—6] and [12,10,-8]) and (B) VTA/SN (peak at [4,—16,—12]).

E7258 | www.pnas.org/cgi/doi/10.1073/pnas. 1800547115

main in the VTA/SN revealed an interaction between valence
and IPE. Specifically, we computed the BOLD response in the
VTA/SN ROI for each participant and trial and entered these
betas into a general linear mixed-effect model with fixed and
random (participant) effects of IPE, valence (gain vs. loss), and
their interaction, as well as fixed and random intercepts. Since
behavior shows greater preference for knowledge for gain than
for loss trials, combined with a general desire to know (Fig. 24),
we expected IPE to be encoded more positively for gains than for
losses. Indeed, this analysis revealed a significant interaction
between IPE and valence [#(3,824) = 1.98, P = 0.047], with no
main effect of IPE [#(3,824) = 1.55, P = 0.12] and no main effect
of valence [#(3,824) = 0.688, P = 0.49]. To visualize this effect, we
plotted the average IPE-related activity from this model for each
valence (Fig. 4C), showing that, as predicted, the interaction is
such that IPEs in VTA/SN are coded more positively for gain
trials than for loss trials.

Finally, we asked whether VD-IPE tracking in our ROIs was
related to the valence-dependent preference for knowledge over
ignorance across participants. In the NAc, a significant correla-
tion was observed between the VD-IPE parameter betas (SPM
GLM 1) and how sensitive participants’ choices were to EV
[R(33) = 0.433, P = 0.012; Fig. 4D]. In other words, individuals
exhibiting strong tracking of VD-IPE in the NAc also select
knowledge more when the chances of winning are high and select
ignorance more when the chances of losing are high (see example
participant’s data in Fig. 4D), while individuals who select
knowledge regardless of EV do not exhibit a VD-IPE signal in
the NAc. We confirmed that each component of the VD-IPE
signal in NAc was related to behavior: BOLD tracking of the
“actual opportunity to gain knowledge” (knowledge or igno-
rance*EV) component of the VD-IPE in NAc was positively
correlated with behavior [R(33) = 0.419, P = 0.015, SI Appen-
dix, Fig. S5A4], while the “expected opportunity to gain knowl-
edge” (expected knowledge*EV) component was negatively
correlated with behavior [R(33) = —0.466, P = 0.006, SI Appendix,
Fig. S5B], with a significant difference between the two correla-
tions (Steiger’s Z = 2.80, P = 0.005).

EV at the time of knowledge/ignorance cue (SPM GLM 1)
was not observed in the VTA/SN [mean beta = 0.0123 + 0.27
(SD), #(32) = 0.26, P = 0.80], nor did EV tracking in NAc cor-
relate with behavior [R(33) = 0.041, P = 0.82], confirming that
the results cannot be explained by a signal encoding EV. Control
analyses also confirmed that these findings cannot be explained by
choice per se (SI Appendix). 1t is of interest that while VD-IPEs
were tracked significantly across the group in the VTA/SN, it is
the variability across individuals in this signal in the NAc, a major
target of VTA/SN projections (34), which was associated with
differences in behavior.

Greater Response to Knowledge over Ignorance in the Orbitofrontal
Cortex. Behaviorally, our results also showed a general preference
for knowledge over ignorance. However, a whole brain-corrected
exploratory analysis [familywise error (FWE) P < 0.05 cluster-level
correction after thresholding at P < 0.001 uncorrected] did not re-
veal tracking of valence-independent IPEs. We thus considered the
possibility that the general preference for knowledge vs. ignorance is
coded in a more simplistic manner rather than an error signal. To
that end, we conducted a whole-brain exploratory analysis compar-
ing BOLD response to knowledge cue with ignorance cue [FWE P <
0.05 cluster-level correction after thresholding at P < 0.001 un-
corrected (35, 36), SPM GLM 3; see Materials and Methods for
details]. A significant effect was observed in the medial orbitofrontal
cortex (OFC) with greater BOLD response to the knowledge cue
than to the ignorance cue (Montreal Neurological Institute [MNI]
coordinates: [3,59,—5], T = 4.86, k = 49 voxels, P = 0.046; Fig. 5).
Closer examination of this cluster revealed that its activity was
significantly tracking valence-independent IPEs [average mean
IPE beta from SPM GLM 1 averaged over all voxels in the OFC
region identified above = 0.385 + 0.57 (SD), #(32) = 3.88, P =
0.0005]. Further tests indicated that it was not, however, a “true”
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Information Prediction Error
choice (behavioral beta)

prediction error (SPM GLM 4; see Materials and Methods for
details). Specifically, only one component of the IPE was
tracked, the actual opportunity to gain knowledge [mean beta =
0.48 + 0.67 (SD), t(32) = 4.12, P = 0.0003, which is obvious as the
voxels were selected as ones where response was greater for
knowledge cue than ignorance cue]. However, it did not track the
second component of the IPE, the expected opportunity to gain
knowledge [mean beta = —0.026 + 0.67, #(32) = —0.21, P = 0.83].
This suggests that the general preference for knowledge over
ignorance is likely coded in the OFC using a simple heuristic
(knowledge > ignorance) rather than a more sophisticated error
term. Additional analyses confirmed that this binary response
coded the opportunity to gain knowledge rather than other
variables such as EV or choice (SI Appendix).

This result accords with previous findings that the OFC codes
for the opportunity to increase knowledge (24) for both rewards
and punishments (37). We speculated that the NAc integrates a
signal from the OFC about the opportunity to increase knowl-
edge together with a valence-dependent signal from the VTA/
SN, to produce valenced evaluation of information. This is
possible given the known anatomical connectivity between these
regions (38, 39). Furthermore, using psychophysiological in-
teraction (PPI) analysis with the NAc ROI used as seed region
(see Materials and Methods for details), we observed significant
enhancement in functional connectivity between the OFC and the
NAc [mean PPI beta = 1.22 + 1.17 (SD), #(32) = 5.96, P < 0.001], as
well as between the NAc and the VTA/SN [mean PPI beta = 0.28 +
0.52 (SD), #(32) = 3.10, P = 0.004] during the time of knowl-
edge/ignorance cue. Together, the findings suggest these regions
may form a network important for information-seeking decisions.

Tracking of Reward Prediction Errors During Informative Outcome
Cue and Expected Value During Pie Presentation. As expected, tra-
ditional RPEs were coded in the NAc ROI when informative
outcome cue was revealed [i.e.,, WIN/LOSS/ZERO cue; SPM
GLM 1; mean beta in NAc ROI = 0.187 + 0.313 (SD), #(32) =
3.425, P = 0.002; SI Appendix, Fig. SSC]. We confirmed that this
signal contained the key components of a prediction error (SPM
GLM 2): It positively tracked actual outcome value [mean beta =
0.248 + 0.51, #32) = 2.79, P = 0.009]) and negatively tracked
expected outcome value [mean beta = —0.206 + 0.52, #(32) = —2.28,
P = 0.03]. Importantly, this RPE signal in the NAc, in contrast to
the VD-IPE signal, was not associated with valence-dependent
information-seeking behavior [correlation across participants be-
tween strength of NAc RPE signal and behavioral beta: R(33) =
0.06, P = 0.74; SI Appendix, Fig. S5D].

Charpentier et al.

Valence-dependent information

is selected over ignorance. Choice of knowledge as a
function of EV is plotted for an example participant.

The NAc also coded information about EV. This was observed
at the time the lottery (pie) was presented, not at the time the
knowledge/ignorance cue was presented. This is sensible as EV
information is provided to the participants when they observe the
pie, and no new information about EV is provided by the
knowledge/ignorance cue. Interestingly, while our initial analysis
(SPM GLM 1) did not reveal EV coding per se in the NAc ROI at
the time of the pie, exploratory analysis revealed EV was coded in
the NAc relative to the average lottery EV in each block, similar
to RPE [mean beta = 0.093 + 0.23 (SD), #(32) = 2.38, P = 0.024;
SPM GLM §; see Materials and Methods for details].

Willingness to Pay for Knowledge and Ignorance. Thus far our re-
sults provide evidence that mesolimbic reward systems selectively
treat knowledge about favorable outcomes, but not about un-
favorable outcomes, as a reward that should be approached. If
our interpretation is correct then we expect people should be
willing to forgo monetary rewards to gain knowledge that can
support positive beliefs, even when information cannot be used
to alter outcomes. In addition, participants may at times forgo
monetary rewards to avoid knowledge that can support negative
beliefs. We tested these predictions in Experiment 2.

Forty-two participants were given £10 at the beginning of the
experiment to invest in two out of five stocks in a simulated stock
market. On each trial participants observed the evolution of the
market (i.e., whether the market was going up or down; Fig. 64).
We confirmed that when the global market was trending upward
participants expected their stocks had increased in value and when
the market was trending downward they expected their stocks had
decreased in value (Materials and Methods). Participants then bid

Knowledge Cue > Ignorance Cue

X=3

Fig. 5. Knowledge signal in OFC. Medial OFC cluster showing increased
BOLD response during delivery of knowledge cues relative to ignorance cues
(peak at [3,59,-5]; FWE whole-brain cluster-level corrected P < 0.05;
threshold P < 0.001 uncorrected; overlaid on mean anatomical scan).
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Would you like to know
your portfolio value now?
Your total portfolio on Day 9:
Market DOWN l YES
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Participants Receive _Remain
knowledge ignorant

Fig. 6. Factors influencing the amount paid for knowledge and ignorance.
(A) Participants observed the evolution of a financial market after investing
in two of its five companies then decided how much they were willing to pay
to receive or avoid information about their portfolio value. (B) Example
participant’s data showing a positive correlation between market change from
the previous trial and signed WTP [coded positively when participants paid for
knowledge and negatively when they paid for ignorance; R(200) = 0.401, P <
0.001]. Each dot represents one trial. (C) A mixed-effects model was run to
predict signed WTP across all participants. Estimated coefficients, depicting the
fixed effect of two significant factors, signed and absolute market change, are
plotted. Additional control variables were added to the model and detailed in
SI Appendix. (D) The effect of signed market change on signed WTP for
knowledge over ignorance, extracted for each individual participant from the
mixed-effects model. (E) Plotted is the difference in the total amount partici-
pants were willing to pay across all trials in which the market went up minus all
trials in which the market went down, separately for when payment was for
knowledge and ignorance. Error bars represent + SE; *P < 0.05.

for a chance to know (or remain ignorant about) the value of their
portfolio. Specifically, they indicated how much they were willing to
pay to receive or avoid this information on a scale ranging from 99p
(“p” indicates pence) to gain knowledge through Op (no prefer-
ence) to 99p to remain ignorant. The more they were willing to pay,
the more likely their choice was to be honored. Knowledge was
noninstrumental: It could not be used to increase rewards, avoid
losses, or make changes to their portfolio.

On average participants were willing to pay on 47.7% of trials.
On 62.8% of those trials they selected to pay for knowledge
(averaging 16.8p) and on 37.1% to remain ignorant (averaging
14.3p). Importantly, willingness to pay (WTP) to receive or avoid
knowledge was tied to participants’ expectations on whether in-
formation would be positive or negative (see example participant
in Fig. 6B). Specifically, we used a mixed-effects model to esti-
mate the effect of signed market change on signed WTP (that is,
WTP coded positively if participants indicated they wanted to
know and negatively if they wanted to avoid knowing), control-
ling for a host of other factors and with participants as a random
factor (Materials and Methods). This revealed a significant fixed
effect of signed market change [estimate = 1.217 + 0.54 (SE),
£(8,090) = 2.24, P = 0.025, Fig. 6C; for individual effect estimates
see Fig. 6D]. In other words, participants placed greater value on
knowledge when the market was promising than when it was

E7260 | www.pnas.org/cgi/doi/10.1073/pnas. 1800547115

ominous and greater value on ignorance when the market was
ominous than when it was promising. There was also an effect of
absolute market change, reflecting higher valuation of knowl-
edge in volatile markets, while all other factors had no significant
effect (Fig. 6C; see SI Appendix for all predictors and statistics).

We confirmed our conclusions with an additional analysis in
which the total amount participants indicated they were willing
to pay was entered into an ANOVA with choice (knowledge vs.
ignorance) and market change (up vs. down) as within-subjects
factors. Indeed, this revealed a significant interaction [F(1,41) =
5.26, P = 0.027; Fig. 6E], characterized by greater WTP for ig-
norance when the market was down (when participants expected
bad news) vs. up (when participants expected good news) and the
opposite pattern for WTP for knowledge.

Discussion

Understanding what drives the pursuit and evasion of knowledge
is crucial, since information significantly impacts our economy
and well-being. Our current findings offer important insight into
how humans value the opportunity to gain knowledge. We pro-
vide unique empirical evidence that when all else is held constant
people value knowledge more about desirable future outcomes
than about undesirable ones and value ignorance more about
undesirable future outcomes than about desirable ones. Not only
was this evident in people’s decisions to gain knowledge or re-
main ignorant but also in the amount they were willing to pay for
knowledge or its avoidance.

By recording brain activity of individuals who were making
choices between knowledge and ignorance, we show that the
opportunity to receive information that strengthens beliefs about
future gains, but not losses, is coded in mesolimbic reward re-
gions similarly to primary rewards that should be approached.
Specifically, mesolimbic reward regions compute, on a trial-by-trial
basis, errors in predicting the opportunity to gain knowledge which
scale with the expected valence of that knowledge. The strength of
this neural signal in the NAc predicted people’s preference for in-
formation that can strengthen positive beliefs over negative beliefs.
In the OFC, however, we observe a larger response to the oppor-
tunity to receive knowledge over ignorance regardless of the likely
valence of the information. We speculate that the NAc may in-
tegrate a signal from the OFC about the opportunity to increase
knowledge together with a value signal in the VTA/SN, to produce
a general preference for knowledge that is modulated by valence.
Because information is a crucial ingredient for the formation of
beliefs, this neural principle has the potential to bias beliefs.

Our findings provide evidence that beliefs have utility in and
of themselves. This idea, which is fundamental to theories of
belief formation, has roots in philosophy and psychology and has
been expressed formally in recent behavioral economic models
(12-17). According to these models, positive beliefs generate
positive utility and negative beliefs negative utility. These utilities
are increased when beliefs are confirmed with certainty. Thus,
people will be motivated to boost the positive utility of desirable
beliefs by gaining knowledge that can confirm them but moti-
vated to reduce the negative utility of undesirable beliefs by
remaining oblivious to information that can confirm them. This
bias sits on top a general preference to increase knowledge. It is
also consistent with the finding that the longer people have to
wait for a reward, the more they prefer advance knowledge (40),
presumably because knowing allows boosting the anticipation of
the reward. Indeed, real-world observations reveal that people
monitor investments more during bull than during bear markets
(i.e., when they expect good news) (17, 18).

Notably, by using this information-seeking strategy people are
left with a greater degree of uncertainty about future losses than
gains, in other words, revealing greater tolerance for uncertainty
in the domain of losses. We speculate that this allows people
greater wiggle room in their beliefs about losses, affording them the
opportunity to bias their beliefs in a desired direction. It would be
interesting to examine whether ambiguity-averse individuals, who
assign negative utility to outcome uncertainty (41), are less likely to
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select ignorance in the domain of loss than other individuals and
whether they display a stronger general preference for knowledge
regardless of valence. It has also been suggested that ambiguity
aversion may be specific to the domain of gain and reduced, or
nonexistent, for losses (42, 43), raising the possibility that the ob-
served valence-dependent information seeking may be linked to a
valence-dependent bias in ambiguity aversion.

Our study focused on how people value knowledge about
valenced outcomes and its underlying neural representation.
However, the results also show a strong general preference for
knowledge over ignorance. Behaviorally, participants select
knowledge at a higher rate than ignorance, and neurally we
observe a larger response in the medial OFC to knowledge cues
than to ignorance cues. This accords with findings that the OFC
codes for the opportunity to increase knowledge (24) for both
rewards and punishments (37) and responds to curiosity relief
(8). Two previous papers also found that human curiosity (rather
than its relief) for nonvalenced trivia questions was associated
with enhanced activation in reward regions (21, 44). Curiosity
may be the common thread tying our findings, in the sense that
people may be more curious about positive outcomes. We
speculate that the NAc may integrate a signal from the OFC
about the opportunity to obtain knowledge with a valence-
dependent value signal in the VTA/SN, to produce greater in-
formation seeking when content is expected to be positive than
negative. Indeed, there is known anatomical connectivity be-
tween these regions (38, 39) and we also find increased func-
tional connectivity between them at the time knowledge and
ignorance cues are presented. The findings suggest these regions
together form a network important for encoding the value of
information (see related suggestions in refs. 8, 22-24, 37, 45,
and 46).

Information in our study did not have instrumental value. A
future question is whether IPEs in mesolimbic reward circuitry
can bias behavior when information has instrumental utility. It
has been observed that people’s decisions to seek information
are likely influenced by valence even when information can in-
form action. For example, in one study (47), 396 women who
gave blood samples were later told that those samples had been
analyzed to identify genes that predispose for breast cancer and
were asked whether they would like to receive the results. Even
though individuals at risk for breast cancer can take pre-
cautionary actions to reduce the likelihood of developing the
disease, 42% of the participants chose not to know.

Taken together, our findings reveal a biological mechanism
that underlies the valuation of knowledge and ignorance, pro-
viding insights into this integral part of human behavior. Our
work demonstrates that a basic neural computation represented
in mesolimibic reward circuitry—errors in predicting the op-
portunity to gain knowledge—is modulated by valence and ties
to a tendency to seek knowledge that can produce desirable
beliefs over undesirable ones. In daily life, this valence-modu-
lated information search has considerable implications for many
domains including politics, finance, and health behavior. It can
lead to suboptimal outcomes if not properly managed, such as
when individuals fail to attend medical screenings in an attempt
to shun bad news.

Materials and Methods

Participants (Experiment 1). Thirty-nine healthy volunteers were recruited via
an advertisement. One participant fell asleep in the scanner, one participant
aborted the study because of claustrophobia, and behavioral data files were
lost for one participant. Behavioral data are thus reported for the remaining
36 participants [16 males, 20 females; mean age 25.41 y + 4.59 (SD); age range
18-35 y]. Additionally, data from three participants were excluded from the
fMRI analysis due to movement greater than 3 mm; fMRI data are thus
reported for 33 participants (14 males, 19 females; mean age 25.61y + 4.67). All
participants were right-handed, free from past or present psychiatric or neu-
rological disorders, and MRI-safe. The study was approved by the Massachusetts
Institute of Technology (MIT) Committee on the Use of Humans as Experi-
mental Subjects and the data collected at the Athinoula A. Martinos Imaging

Charpentier et al.

Center at McGovern Institute for Brain Research, MIT. All participants gave
written informed consent and were paid for their participation.

Replication of the main behavioral result was obtained on a pilot sample of
26 participants [11 males, 15 females; mean age 22.84 y + 4.25 (SD); age
range 18-32 y]. Data from these participants were collected at University
College London (UCL), and that study was approved by the departmental
ethics committee at UCL.

Procedure and Task Design. A phone screening was conducted to ensure
participants met eligibility criteria (age between 18 and 35y, right-handed,
no past or present psychiatric or neurological disorder, no alcohol or substance
dependence or abuse, no medication or recreational drug use in the week
preceding the study, as well as MRI safety criteria). When arriving to the lab-
oratory participants were given instructions and five practice trials. They then
completed the information-seeking task while their BOLD signal was recorded.
The task was programmed using Cogent Graphics (www.vislab.ucl.ac.uk/
cogent_graphics.php) running under MATLAB (https:/www.mathworks.com/).

On each trial (Fig. 1 A and B) participants were presented with three items
sequentially for 3 s each: a pie indicating the likelihood of winning or losing
$1 and two vertical blue bar offers representing the probability of viewing
the outcome cue. One bar was presented on the left and one on the right.
The order of these stimuli (pie first or bars first) was counterbalanced across
trials. All three items were then presented on screen together and partici-
pants had up to 3 s to select between the two offers using a button press.
Then, either a knowledge cue appeared in the form of a green bar or an
ignorance cue appeared in the form of a red bar (colors counterbalanced
across participants). The horizontal bar gradually disappeared, wiping out of
the screen from left to right, for a jittered duration of 3 s to 7 s. These cues
were deterministic; a knowledge cue was always followed by an informative
outcome cue for 3 s revealing the lottery outcome (i.e., Win, Zero, or Lose).
An ignorance cue was always followed by a noninformative outcome cue
("XXXX") for 3 s. An intertrial fixation cross was shown for 1 s.

Participants were instructed that regardless of whether they viewed an
informative or noninformative outcome cue on a given trial the lottery would
be played and they would still receive the same money outcome from that
trial at the end of the session. They were told there was no right or wrong
answer and that they should choose whether they preferred a higher or lower
probability of receiving information about their outcome.

The task consisted of two gain blocks (Fig. 1A), in which the outcome of
each trial was either win $1 (“WIN") or nothing (“ZERO"), and two loss
blocks (Fig. 1B), in which the outcome was lose $1 (“LOSE”) or nothing
(“ZERQO"). Each block contained 30 trials and lasted ~11 min. Gain and loss
blocks alternated and whether the first block was a gain or loss was coun-
terbalanced across participants. Participants were informed at the beginning
of each block whether they were about to play a gain block or a loss block.
Block type was also indicated with a different pie color (orange or purple,
counterbalanced across participants). The probability of winning or losing
varied parametrically from 0.1 to 0.9 (in 0.1 increments) and was in-
dependent from the offered probabilities of receiving information, which
varied from 0 to 1 (in 0.1 increments). These probabilities of receiving in-
formation for the two offers were set on each trial such that they were
never equal to each other and such that the difference between the two
offers varied uniformly from 0.1 to 1 (in 0.1 increments).

If participants missed a response, the words “Too late! Wait until next
trial” were displayed on the screen for 8.5 s (equivalent to the maximum
duration of a trial, so that participants would not complete the task quicker
by missing responses). Participants were also instructed that they would
receive the worst possible outcome when they missed a trial. On average,
participants only missed responses on 3.42% of trials.

Immediately after scanning, participants completed a follow-up rating task in
which they were presented with the pies used in the main task, but instead of
making choices they rated the extent to which they wanted to know the outcome
of that lottery (Fig. 1C). The task had two blocks (one for gain and one for loss, in
the same order as in the main fMRI task). On each trial they were presented with
a pie for 3's, followed by the question “Would you like to know the outcome?”
They responded using the left and right arrow to move a cursor along a rating
scale from “Not at all” (300 pixels left from screen center) to “Extremely”
(300 pixels right from screen center), pressing the space bar to confirm their
ratings. The cursor starting position was randomized around the middle of the
scale (between —100 and +100 on the scale from —300 to +300). There was no
response time limit. In each block, participants were presented with 18 pies twice
in a random order. For consistency with the main task, a knowledge or an
ignorance cue was presented for a jittered duration of 3 s to 7 s, followed by
the informative outcome cue or noninformative outcome cue for 3's, and a 1-s
fixation cross between trials. The probability of observing the knowledge or
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ignorance cue was random (50% probability) and independent from the par-
ticipant’s rating. Outcomes were added to the participant’s payment.

Finally, participants completed a comprehension task in which they were
shown six stimuli used in the main task (pies and blue bars) and asked to enter
the corresponding probability in percent. All participants reported correct
percentages with less than 8% error from the true value [mean error across six
trials = 1.15% + 2.72 (SD), range = 0-7.17% error], indicating they un-
derstood the mathematical probabilities associated with pies and bars dur-
ing the main task. They were also given a debriefing questionnaire.
Participants received $60 for completing the study. In addition, they were
endowed $10 and the accumulated outcome from all trials was added or
removed from this amount.

Behavioral Data Analysis. Data were extracted using MATLAB and statistical
tests were performed using IBM SPSS Statistics (version 22). The proportion of
trials in which participants chose the most informative offer (i.e., highest blue
bar, referred to as “information choice”) was calculated (i) across all trials
and compared with a random choice propensity of 0.5 using a one-sample
t test, (ii) separately for gain and loss blocks and compared using a paired
t test (Fig. 2A), and (iii) separately for each probability of winning/losing and
analyzed by calculating the slope of the best-fit regression line between
probability of winning/losing and information choice for each individual. For
illustrative purposes, we also plotted a trendline from a second-order poly-
nomial fit (Fig. 2C). Information preference ratings collected in the postscan
follow-up task were analyzed in a similar manner as above (Fig. 2 B and D).

Individual differences in valence-dependent information seeking were
assessed by calculating for each individual the slope of the best-fit regression
line between EV (ranging from —0.9 to +0.9) and probability of choosing the
most informative target (Fig. 2E).

We also assessed the remaining uncertainty over outcomes following the
presentation of informative or noninformative cues. Uncertainty was defined
as 0 when informative outcome cue was revealed and as the SD of the lottery
when the noninformative outcome cue was revealed (e.g., if the probability
of a win on a trial is 0.8, then uncertainty is equal to the SD of a distribution
with an 0.8 chance of $1 and 0.2 chance of $0). Uncertainty was averaged for
each participant separately for gain and loss trials and for each outcome
probability (from 0.1 to 0.9) and analyzed in a two- (valence: gain/loss) by-
nine (outcome probability) repeated-measures ANOVA (Fig. 2F).

General Linear Mixed-Effect Models of Information Choice. A general linear
mixed-effects model of choice was run to assess the effect of several factors
on choice, while controlling for others. The dependent variable was choice,
coded as 1 if knowledge (higher blue bar) was chosen and 0 if ignorance
(lower blue bar) was chosen. Three predictors were included in the model:

o Difference between the information probabilities of the two offers
(blue bars):

P(info) 4 =P(info)high — P(info) -

o EV. Because the possible outcomes were $1 or 0 for gains and —$1 or 0 for
losses this is equal to the probability of gain in gain trials and the negative
probability of loss on loss trials:

EV= P(win) for gain trials
| —P(lose) for loss trials”

e Outcome uncertainty, defined as the SD of the outcome distribution (i.e.,
if the probability of a win on a trial is 0.8 than uncertainty is equal to the
SD of a distribution with a 0.8 chance of $1 and 0.2 chance of $0):

\/P(Win)(1 —EV)? 4+ (1-P(win))(0—EV)?  for gain trials
Uncertainty =

\/PlIose)(—1—EV)? + (1 P(lose)) (0—EV)*  for loss trials

Uncertainty was maximum when the outcome probability was 0.5 (un-
certainty = 0.5) and was at its minimum when the outcome probability was
at its extremes of 0.1 or 0.9 (uncertainty = 0.3).

These three factors were z-scored and included in the model as fixed
effects and random effects (varying between participants). A fixed intercept
and a random intercept were also included. This model (model 1) was the
full model.

Comparison models were defined as follows (see S/ Appendix, Table S1 for
details of model performance):
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e Model 2: fixed and random effect of EV; fixed and random intercept

e Model 3: fixed and random effect of uncertainty; fixed and random intercept

e Model 4: fixed and random effect of P(info) difference; fixed and
random intercept

e Model 5: null model: fixed and random intercept

All models were run on MATLAB using the fitglme function with a binomial
response distribution and maximum likelihood estimated using the Laplace
method. For each model, Bayesian information criterion (BIC), Akaike information
criterion (AIC), and adjusted R? were computed. Given that the models differed
in their number of parameters, BIC and AIC (rather than R?), which penalize
models with additional parameters, were used to compare models.

fMRI Data Acquisition. Neuroimaging data were collected on a Siemens Trio
3T MRI scanner using a 32-channel head coil at the Athinoula A. Martinos
Imaging Center at McGovern Institute for Brain Research, MIT. Four func-
tional scanning sessions, starting with four discarded dummy volumes and
manually stopped 5-10 s after the end of the task block, were acquired using
a gradient echo-planar imaging (EPI) sequence with the following parame-
ters: volume repetition time = 2.2 s, echo time = 30 ms, flip angle = 90°,
matrix = 64 x 64, voxel size = 3.13 x 3.13 x 3 mm?, 36 axial slices auto-
matically placed for whole-brain coverage. To correct for inhomogeneities
of the static magnetic field, a field-map sequence was then acquired and
used in the unwarping stage of data preprocessing. A T1-weighted MPRAGE
anatomical scan was acquired at the end of the session (176 sagittal slices,
repetition time = 2.53 s, echo time = 3.48 ms, flip angle = 7°, matrix = 256 x 256,
voxel size = 1 x 1 x 1 mm3).

fMRI Data Preprocessing. MRI data preprocessing and analysis was performed
using SPM8 software (Wellcome Trust Centre for Neuroimaging, www.fil.ion.
ucl.ac.uk/spm) in MATLAB. A field map was created for each functional
session using the SPM FieldMap toolbox. Using this field-map file for phase
correction, images were realigned to the first functional volume of each session
and unwarped using seventh-degree B-spline interpolation. Movement was
checked using the artifact detection toolbox (https:/www.nitrc.org/projects/
artifact_detect/) to ensure that any scan-to-scan translations greater than one-
half of a voxel (1.5 mm) or rotations greater than 1° did not cause artifacts in
the corresponding scan(s). The anatomical scan was coregistered to the
unwarped mean functional image. All images were then reoriented such that
the anterior commissure lay at coordinates [x = 0, y = 0, z = 0]. Functional
images were spatially normalized to the standard MNI EPI template (with voxels
resized to 3 x 3 x 3 mm?) using seventh-degree B-spline interpolation, fol-
lowed by smoothing using a 6-mm?3 FWHM Gaussian kernel.

fMRI Data Analysis. For each participant, GLMs were used to model BOLD
signal during the task, incorporating an AR (1) model of serial correlations
and a high-pass filter at 1/128 s. Below is a description of the variables used
as predictors in the GLM analyses (see also S/ Appendix, Fig. S1B).

RPE was calculated for each trial in which an informative outcome cue was
delivered as the difference between the outcome and its EV:

RPE=V-EV,

where V is +$1 for WIN, 0 for ZERO, and —$1 for LOSE. EV is equal to the size
of the pie (0.1-0.9) multiplied by $1 on gain trials and multiplied by —$1 on
loss trials.

IPE is equal to the difference between actual and expected opportunity to
gain knowledge:

IPE=1-El,

where | is coded as 1 for knowledge cue and 0 for ignorance cue. El is equal to
the height of the chosen blue bar, representing the probability of observing
the knowledge cue between 0 and 1.

VD-IPE is calculated as

VD-IPE=IPE *EV.

For all GLMs described below onsets were modeled as stick functions (du-
ration = 0 s). Trials of all four blocks were collapsed into one session in the
design matrix. Regressors of no interest included missed choice onset (if
any), block type (1: gain block volumes; 0: loss block volumes), and block
number (1: first block of each type; 0: second block of each type)—those two
regressors accounted for the transitions between blocks after collapsing
them into a single session in the model—and six movement parameter re-
gressors in each block. All parametric modulators associated with the same
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onset regressor were allowed to compete for variance (the default serial
orthogonalization of parametric modulators in SPM8 was turned off).

First-level contrasts were created through linear combinations of the
resulting beta images and analyzed at the group level with one-sample t tests
using the standard summary statistics approach to random-effects analysis
implemented in SPM. Exploratory whole-brain analyses were performed
with a cluster-forming threshold of P < 0.001 uncorrected, followed by
cluster-level FWE correction at P < 0.05 (35, 36).

Five GLMs were run, with additional control models reported in S/
Appendix:

GLM 1. The main GLM used included the following predictors: (i) onsets of
the knowledge/ignorance cue (i.e., green and red bars) parametrically
modulated by (ii) IPE, (iii) EV, and (iv) VD-IPE; (v) onsets of the informative
outcome cue (i.e., WIN/LOSS/ZERO) parametrically modulated by (vi) RPE;
(vii) onsets of the noninformative outcome cue (i.e., XXXX); (viii) onsets of
the pie (lottery), with (ix) EV as a parametric modulator; (x) onsets of each
information offer (blue bars) parametrically modulated by (xi) the asso-
ciated probability of receiving information.

GLM 2. The goal of this model was to conduct a rigorous test of whether
the VD-IPE-related activity fulfills the key requirement of a prediction
error signal; that is, whether it contains both components of a prediction
error, tracking one positively (“actual outcome”) and the other negatively
(“predicted outcome”). This GLM was the same as GLM 1 except that the VD-
IPE parameter was replaced with its two components: (/) the “actual oppor-
tunity to gain knowledge” (the presence of the knowledge or ignorance cue,
coded as 1 or 0) multiplied by the trial's EV (I*EV) and (ii) the “expected
opportunity to gain knowledge” (the height of the chosen blue bar) multi-
plied by EV (EI*EV) (Fig. 4B). The RPE parameter from GLM 1 was also replaced
with its two components: (i) outcome (coded as 1, 0, —1) and (i) and EV.

GLM 3. The goal of this model was to test whether the general preference
for information is represented simply as differential BOLD response to the
knowledge cue and ignorance cue. This GLM was the same as GLM 1 ex-
cept that the IPE parametric modulator was replaced by a binary para-
metric modulator coding knowledge cue as 1 and ignorance cue as 0.

GLM 4. Similar to GLM 2, the goal of this model was to conduct the
analogous test of prediction error coding for IPE. Thus, the IPE parameter
was replaced with its two components: (i) the “actual opportunity to gain
knowledge” (the presence of the knowledge or ignorance cue, coded as
1 or 0) and (ii) the “expected opportunity to gain knowledge” (the height
of the chosen blue bar).

GLM 5. The goal of this model was to test whether EV was coded relative
to the average EV of the current context. This was calculated as the
difference between the lottery EV (varying from +0.1 to +0.9 for gains
and from —0.1 to —0.9 for losses) and the average EV of the current block
(average EV = +0.5 for the gain blocks and —0.5 for the loss blocks). This
GLM was the same as GLM 1 except that the EV parametric modulator
(both at the time of knowledge/ignorance cue and at the time of the pie)
was replaced by “relative EV.” In this GLM VD-IPE signal in VTA/SN ROI
remained significant [mean beta = 0.138 + 0.25 (SD), t(32) = 3.17, P =
0.003], as did the correlation between VD-IPE signal in NAc ROI and be-
havioral bias [R(33) = 0.40, P = 0.021]. Relative EV was coded at the time
of pie presentation [mean beta in NAc ROl = 0.093 + 0.23 (SD), t(32) =
2.38, P=0.024], not during knowledge/ignorance cue presentation [mean
beta in NAc ROl = 0.016 + 0.20 (SD), t(32) = 0.48, P = 0.64; mean beta in
VTA/SN ROI = 0.014 + 0.22 (SD), t(32) = 0.37, P = 0.72].

ROIs. ROIs were built using the Neurosynth (neurosynth.org/) meta-analysis
map of the term “reward.” The three highest peaks in this map were located
in the left NAc (MNI coordinates [-10,8,6]), the right NAc ([12,10,-8]), and
the midbrain VTA/SN ([4,—16,—12]). We built 4-mm-radius spheres around
each of these peaks and combined the left and right NAc spheres into one
bilateral mask for lack of an a priori lateralization hypothesis, thus leading to
two ROIs [bilateral NAc (Fig. 3A) and midbrain VTA/SN (Fig. 3B)]. Overlaying the
midbrain ROI with an anatomical atlas of the midbrain (32) indicated that the
midbrain ROI contains voxels in both VTA and SN (S/ Appendix, Fig. S6). We
therefore refer to this ROl as VTA/SN throughout the paper. Parameter esti-
mates for contrasts of interest (e.g., VD-IPE signal; Fig. 4A) were calculated for
each ROI by averaging across the voxels for each participant and were also
correlated with individual differences in the behavioral bias. Bonferroni cor-
rection was applied to account for two ROIs wherever effects were tested in
both, leading to a two-tailed t test threshold of P < 0.025.

Charpentier et al.

Trial-by-Trial Extraction of BOLD Signal and Correlation with IPE Values. A trial-
by-trial model was built in SPM. For each participant, we created a design
matrix in which each presentation of knowledge or ignorance cue (30 per
block) was modeled as a separate event (without parametric regressors at-
tached to any of these events). Such a procedure has been used many times in
the past (e.g., refs. 26, 48, and 49). Other onsets and regressors (initial stimuli
presentation, informative outcome cues, noninformative outcome cues, and
movement regressors) were added similarly to the main model (GLM 1)
described above. BOLD signal during knowledge/ignorance cue presentation
was then extracted from the VTA/SN ROI separately for each trial. A general
linear mixed-effects model was run (outside of SPM, using fitglme in MATLAB)
to predict BOLD in VTA/SN on each trial from the following predictors: fixed
and random (varying between participants) effects of IPE, fixed and random
effects of valence (coded as 1 for gain trials and —1 for loss trials), and fixed
and random IPE*valence interaction, as well as fixed and random inter-
cepts. The output of interest consisted of the fixed effect F statistic for the
IPE*valence interaction in predicting BOLD in VTA/SN (Fig. 4Q).

Functional Connectivity Analyses. Functional connectivity between the NAc and
OFC and between the NAc and VTA/SN was analyzed using PPl in SPM8. The NAc
ROl was used as the seed region: BOLD time series was extracted across all voxels
in this mask using the Volume of Interest utility of SPM. A first-level model was
created for each participant including the deconvolved NAc BOLD time series
(physiological regressor), the onsets of the knowledge/ignorance cues (psy-
chological regressor), and their cross-product (PPl regressor). This PPl model also
included all other regressors from GLM 1. Two nuisance time series were also
added: from a white-matter voxel (corpus callosum body, MNI coordinates
[0,14,19]) and from a cerebrospinal fluid voxel (center of the right lateral
ventricle, MNI coordinates [4,14,18]). Contrasts were defined on the PPI re-
gressor, reflecting increased functional connectivity with the NAc during pre-
sentation of the knowledge/ignorance cues. Functional connectivity betas were
extracted over all voxels in each ROI of interest (OFC functional cluster identified
in Fig. 5 and the VTA/SN ROI) for each participant and mean betas were
compared with zero using a one-sample t test.

Stock Market Task (Experiment 2). If beliefs have utility people may be willing
to pay to gain knowledge that will induce certainty in positive beliefs and may
at times pay to avoid knowledge that will induce certainty in negative beliefs.
To test this hypothesis, we ran a separate study.

Forty-five participants were recruited via the UCL subject pool. Data from
participants who missed more than one-fourth of all trials were excluded
(Nexcluded = 3). Final data are thus reported on 42 participants [14 males,
28 females; mean age = 28.05 y + 11.99 (SD); age range 18-66 y]. The study
was approved by the departmental ethics committee at UCL.

The task consisted of four blocks of 50 trials each. At the beginning of each
block, participants were endowed with 100 points, worth £10, which they
were to invest in two of five fictitious stocks that compose a “global mar-
ket.” On each trial participants observed the global market evolution (a
dynamic increase or decrease in the curve lasting 2.3 s). Given that the
participant’s portfolio consisted of two companies out of the five, the global
market was a partial indicator of the change to the participant’s own
portfolio value. Unbeknown to the participants, on each trial there was a
65% likelihood that their portfolio would follow the market trend; other-
wise, the portfolio would vary in the opposite direction than the market
with a randomly generated magnitude.

On each trial, after observing the change to the global market (2.3 s)
participants were given the opportunity to find out their portfolio value (Fig.
6A). In particular, they had up to 8 s to indicate how much they were willing
to pay to know or to remain ignorant. They did so using a scale ranging from
99p to avoid information ("NO"), through 0, to 99p to receive information
("YES"). Left/right positions of YES and NO were counterbalanced across
participants. We refer to this scale as the WTP scale (50). The more partici-
pants were willing to pay the greater the probability their wish would be
honored. If they selected Op, then information was delivered at random
(50%). If they selected to pay to receive/avoid information, then their se-
lection determined the probability their wish was honored. If they selected
an amount between 1p and 20p, their wish was honored with 55% proba-
bility; between 21p and 40p, their wish was honored with 65% probability,
and so on up to 95% probability. Participants were not told the exact
mathematical relationship between their payment and their likelihood of
receiving/avoiding information. However, they were clearly instructed (both
by the experimenter and on the instruction screens) that the more they paid
toward YES the more likely they would be to find out their portfolio value and
the more they paid toward NO the more likely they would be to NOT find out.

PNAS | vol. 115 | no.31 | E7263

www.manaraa.com

g
=
2
[T}
=
=
[=]
o
[}
™)
7]

PSYCHOLOGICAL AND

NEUROSCIENCE

COGNITIVE SCIENCES


http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1800547115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1800547115/-/DCSupplemental
http://neurosynth.org/
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1800547115/-/DCSupplemental

o
&
S
&
~
&
8
&
E
e
8
@
o
=
S
B
2
=3
3
3
g
<]
=
g
o
g
=
8
I
@
o
©
o
8
°
8
k-l
8
S
=
H
8
a

Next, their portfolio value in points was presented on screen or hidden (“XX
points” was shown) for 3 s.

At the end of the study one trial was selected randomly (regardless of
whether information was delivered) and participants were paid that outcome
(e.g., portfolio value of 110 points = £11). In addition, if they paid money to
gain or avoid knowledge on that trial and their choice was respected (e.g.,
they paid 50p to receive information and received it), that amount was
deducted from their payment (e.g., £11 — £0.50 = £10.50).

The hypothesis was that when the global market went up participants
would expect their portfolio value to increase and would be more eager to
have their outcome revealed, and vice versa when the global market went
down. This hypothesis assumes that participants’ expectations regarding the
value of their own portfolio were related to global market trend. To test this
assumption in the last two blocks participants were asked on each trial, after
observing the global market, to guess whether their portfolio value in-
creased or decreased relative to the previous trial [from —4 (“decreased a
lot”) to +4 (“increased a lot”)] and indicate confidence in their judgment
[from 1 (“not confident at all”) to 9 (“extremely confident”)]. Each rating
had an 8-s time limit. The rest of the trial proceeded as before (i.e., WTP
scale followed by delivery or denial of information).

Indeed, there was a tight correlation between the market trend and
participants’ expectations on whether their value had increased [mean re-
gression slope between market change and expectation rating = 0.168 +
0.088 (SD), t(41) = 12.34, P < 0.001]. Furthermore, as one would predict, the
stronger the market trend (i.e., the greater the absolute change in market
value on current trial relative to the last) the greater the participant’s con-
fidence in their prediction [mean regression slope between absolute market
change and confidence rating = 0.017 + 0.033 (SD), t(41) = 3.40, P = 0.001].
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To test our primary hypothesis—that people would pay more to gain
knowledge about positive outcomes than negative outcomes and vice versa
to remain ignorant—we conducted two complementary analyses. First, we
ran a mixed-effects model to predict signed WTP (equal to WTP for pay-
ments to receive information and negative WTP for payments to avoid in-
formation) from the following variables: signed market change (i.e., positive
when going up and negative when going down), absolute market change,
known portfolio value (the value of the last revealed portfolio information),
number of trials since information was last revealed, trial number, and
cursor starting position on WTP scale (this was random across trials). All re-
gressor values were z-scored. The model included fixed and random effects
of each regressor, as well as participant as the random variable and fixed
and random intercepts (Fig. 6C).

Second, for each participant we summed up the amount they were willing to
pay over all trials where they decided to receive knowledge, and separately the
amount they were willing to pay over all trials where they decided to remain
ignorant. This was done separately on trials in which the market went up and on
trials in which the market went down. Statistically, this effect was analyzed by
entering WTP values across participants into a two- (decision: seek/avoid) by-
two (market change: up/down) repeated-measures ANOVA (Fig. 6D).
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